Product Properties of Hilbert Transforms

C. Carton-Lebrun
Unitersité de l'État à Mons, Faculté des Sciences, B-7000 Mons, Belgitum
Communicated by P. L. Butzer

Received March 24, 1976

Let $f \in L^{\prime \prime}(\mathbb{R}), g \in L^{\prime \prime}(\mathbb{R})$ with $1 \quad p \cdot \infty, 1 \cdot q \cdot x$ and let $H f, H g$ be their respective Hilbert transforms. We give a simple proof of the identity $\mathrm{Hf} \cdot \mathrm{Hg}$ $f \cdot g=H(f \cdot H g+g \cdot \tilde{H})$ a.e. and of its inverse in the case (1p)+(1:q) 1 which includes the cases already considered by Cossar and Tricomi. We next derive applications, especially to boundary values of analytic functions.

1. Notation

We consider complex-valued functions on $r x$ and use the following notation:
$\mathfrak{B}(E, F)$: set of bounded linear operators from vector space E to vector space F.
C_{0} : set of continuous functions vanishing at infinity.
$\mathfrak{x}: \quad$ Fourier operator defined (i) for $f \in L^{1}$, by $(\tilde{\mathscr{F}} f)(x)$ $\int_{-\infty}^{+\infty} f(t) e^{-i x t} d t$, (ii) for $f \in L^{2}$, by limits in L^{2} of analogous truncated integrals.
\mathscr{F}^{*} : inverse Fourier operator defined by

$$
\left(\mathbb{e}^{*} f\right)(x)=\lim _{y 0_{+}} \frac{1}{2 \pi} \int_{-x}^{\infty} f(t) e^{i+x} e^{u x} d t
$$

a.e. on the space of functions f such that this limit exists a.e.
$H f: \quad$ Hilbert transform of f, defined a.e. by

$$
\begin{aligned}
& (H f)(x)=\left.\lim _{x \rightarrow} \frac{1}{\pi}\right|_{1} \frac{f(t-u) \quad f(t \cdot u)}{u} d u \\
& \text { for } t \in L^{\prime \prime}, 1 \quad \infty \text {. }
\end{aligned}
$$

$\sigma: \quad$ multiplication operator by function $\sigma(x) \cdots i \operatorname{sign} x$.

2. Product Properties

2.1. Preliminary Lemma. If $F \in L^{2}, G \in L^{2}$, then the following identity holds in C_{0} :

$$
\begin{equation*}
(\sigma F * \sigma G)-(F * G)=\sigma[(G * \sigma F)+(\sigma G * F)] \tag{1}
\end{equation*}
$$

Proof. It suffices to point out that, as a straightforward calculation shows, both sides of (1) are equal to

$$
-2 \operatorname{sign} x \int_{0}^{x} F(t) G(x-t) d t
$$

2.2. Theorem. If $f \in L^{p}, g \in L^{q}$ with $1<p<\infty, 1<q<\infty$ and $1 / r=(1 / p)+(1 / q) \leqslant 1$, then

$$
\begin{align*}
& H f \cdot H g-f \cdot g=H(f \cdot H g+g \cdot H f) \tag{2}\\
& f \cdot H g+g \cdot H f=-H(H f \cdot H g-f \cdot g) \tag{3}
\end{align*}
$$

When $r=1$, this implies in particular that $H(f \cdot H g+g \cdot H f) \in L^{1}$ and $H(H f \cdot H g-f g) \in L^{1}$.

Proof. (a) We first consider the case $p=q=2$. By Lemma 2.1 applied with $F=\mathfrak{F} f, G=\mathfrak{F} g$, and since $\mathfrak{F} H f=\sigma \mathfrak{F} f, \mathfrak{F} H g=\sigma \mathscr{F} g$ in L^{2}, we have

$$
(\mathfrak{F} H f * \mathfrak{F} H g)-(\mathfrak{F} f * \mathfrak{F} g)=\sigma[(\mathfrak{F} g * \mathfrak{F} H f)+(\mathfrak{F} f * \mathfrak{F} H g)]
$$

in C_{0}. This may be written

$$
\begin{equation*}
\mathfrak{F}(H f \cdot H g-f \cdot g)=\sigma \tilde{\vartheta}(g \cdot H f+f \cdot H g) \tag{4}
\end{equation*}
$$

for

$$
\mathfrak{F} f * \mathscr{F} g=\mathscr{F}(f g) \quad \text { whenever } \quad f \in L^{2}, g \in L^{2}
$$

We then obtain identity (2) by making \mathfrak{F}^{*} operate on both sides of (4) and by using Proposition 8.3.4 of [1].
(b) Let us now suppose $1 / r=(1 / p)+(1 / q) \leqslant 1$. Then, there exist $f_{n} \in L^{2} \cap L^{p}, g_{n} \in L^{2} \cap L^{q}$ such that $f_{n} \rightarrow f$ in L^{p} norm, $g_{n} \rightarrow g$ in L^{q} norm and

$$
\begin{equation*}
\left(H f_{n}\right)\left(H g_{n}\right)-f_{n} g_{n}=H\left(f_{n} H g_{n}+g_{n} H f_{n}\right) \quad \text { a.e. } \tag{5}
\end{equation*}
$$

for every n.
When $r=1$, the first member of the latter equality converges to $H f \cdot H g-$ $f \cdot g$ in L^{1} norm, while the second one converges to $H(f \cdot H g+g \cdot H f)$ in measure ([3], III, Theorem 6). Consequently, one can find a subsequence $H\left(f_{n_{k}} \cdot H g_{n_{k}}+g_{n_{k}} \cdot H f_{n_{k}}\right)$ converging a.e. both to $H f \cdot H g-f \cdot g$ and
$H(f \cdot H g+g H f)$, which implies identity (2) and in particular that $H(f \cdot H g-g \cdot H f) \in L^{1}$. Identity (3) then follows from Proposition 8.2.10 of [1].

When $r \rightarrow 1$, both members of (5) converge in L^{\prime} norm since $H \in \mathfrak{B}\left(L^{r}, L^{r}\right)$ for r 1. We thus obtain identity (2) a.e. Identity (3) follows by the wellknown property $H^{2} f=\quad f$ in L^{r} for $r>1$.

Remark. The preceding theorem extends Theorem IV of [5] and, a fortiori, Lemma 16 of [2].
2.3. Corollaries. Let f and g be as in the preceding theorem. Then.
(1)

$$
\begin{aligned}
& P \cdot V \cdot \int_{-} \frac{(H f)(x)}{x} \frac{(H f)(t)}{t} g(t) d t \\
& \quad \cdots-P \cdot V \cdot \frac{f(x)}{x} \frac{-h(t)}{t}(H g)(t) d t \quad \text { a.e. }
\end{aligned}
$$

(2) Hf \therefore if $($ resp. Hf if $)$ and Hg ig (resp. Hg ig) imply $H(f g)=$ ifg (resp. $H(f g) \quad-\quad$ ifg). In particular, $H(u t)$ iur for u $f-i H f, v=g-i H g ;$ similarly, $H(u v)$ iut for $a f \cdots i H f, r$ $g+i H g$.
3. Connection with Boundary Values of Analytic Finctions

For $f \in L^{p}, 1<p<\alpha$, let us define $C f$ by

$$
(C f)(z)=\frac{1}{2 i \pi} \int \frac{f(i)}{1}=d t
$$

for $z \in \mathbb{C} \mathbb{R}$.
One may easily deduce from [3, p. 67]. that

$$
(C f)(x)=\lim _{y \rightarrow 0}(C f)(x-i y)
$$

and

$$
(C-f)(x)=\lim _{y \rightarrow 0}(C f)(x+i y)
$$

exist a.e. and satisfy

$$
\begin{equation*}
C^{+} f=(1 / 2 i)(-H f+i f), \quad C-f=(-1 / 2 i)(H f+i f) . \tag{6}
\end{equation*}
$$

We have the following corollaries concerning C and $C^{\text {- }}$

Corollary 3. If $f \in L^{p}, g \in L^{q}$ with $1<p<\infty, 1<q<\infty$ and $1 / r=(1 / p)+(1 / q) \leqslant 1$, then $H\left(C^{+} f \cdot C^{+} g\right)=-i\left(C^{+} f \cdot C^{+} g\right)$ and $H\left(C^{-} f\right.$. $\left.C^{-} g\right)=+i\left(C-f \cdot C^{-} g\right)$ a.e. In particular, $H\left(C^{+} f \cdot C^{+} g\right) \in L^{1}$ and $H(C-f$. $C-g) \in L^{1}$ when $r=1$.

Corollary 4. If f and g are defined as in the preceding corollary, then

$$
C^{+}\left(C^{+} f \cdot C^{+} g\right)=C^{+} f \cdot C^{+} g, \quad C^{-}\left(C^{+} f \cdot C^{+} g\right)=0 \quad \text { a.e. }
$$

In particular, $C^{+}\left(C^{+} f \cdot C^{+} g\right) \in L^{1}$ when $r=1$. Analogous conclusions hold for C^{-}:

$$
C^{-}\left(C^{-} f \cdot C^{-} g\right)=-C^{-} f \cdot C^{-} g, \quad C^{+}\left(C^{-} f \cdot C^{-} g\right)=0 \quad \text { a.e. }
$$

Proofs. It is easy to deduce Corollary 3 from relations (6) and Corollary 2. It is the same for the assertions of Corollary 4 in the case $r>1$. When $r=1$, it is not even evident that $C^{+}\left(C^{+} f \cdot C^{+} g\right)$ exists a.e. and we must proceed otherwise. In this purpose, we notice that, for $F \in L^{1}$, we may write

$$
\begin{aligned}
(C F)(x+i y) & =\frac{1}{2 \pi} \int_{0}^{\infty}\left(\tilde{\mathscr{F} F)(t) e^{i t x} e^{-t y} d t} \quad\right. & (y>0) \\
& =-\frac{1}{2 \pi} \int_{-\infty}^{0}(\tilde{F} F)(t) e^{i t x} e^{-t y} d t & (y<0)
\end{aligned}
$$

since $(2 i \pi)(C F)(z)=\int_{-\infty}^{+\infty} F(t)(\underset{\partial g}{z})(t) d t$, where $z=x+i y, g_{z}(t)=i e^{i t z} U(t)$ for $y>0, g_{z}(t)=-i e^{i t z} U(-t)$ for $y<0, U(t)=0$ for $t<0, U(t)=1$ for $t>0$. Moreover, when $F=C^{+} f \cdot C^{+} g$ and $r=1$, we have $H F=-i F$ by Corollary 3. This implies $\mathscr{F} H F=-i \mathscr{F} F$ in C_{0} and, consequently, $\sigma \mathscr{F} F=-i \mathfrak{F} F$ by Proposition 8.3 .1 of [1]. Thus, $(\mathfrak{F} F)(x)=0$ for every $x \leqslant 0$, and

$$
\begin{aligned}
& \left(C^{+} F\right)(x)=\lim _{y \rightarrow 0_{+}} \int_{-\infty}^{+\infty}(\mathbb{F} F)(t) e^{i t x} e^{-|t| y} d t=F(x) \quad \text { a.e. } \\
& \left(C^{-} F\right)(x)=0
\end{aligned}
$$

which implies the first required identities.
Properties concerning C^{-}are deduced by similar arguments.
Remark 1. From relations (6) and the above corollary, one can derive the following identities too, under the hypotheses of the preceding corollaries:

$$
\begin{aligned}
& C^{+} f \cdot C^{+} g=C^{+}\left(f \cdot C^{+} g+g \cdot C^{+} f-f g\right) \\
& C^{-} f \cdot C^{-} g=C^{-}\left(f \cdot C^{-} g+g \cdot C^{-} f+f g\right) \quad \text { a.e., }
\end{aligned}
$$

Remark 2. When $r=1$, an alternative proof of the first property of C^{+} in Corollary 4 is the following one.

One has $C \cdot C \cdot g=h+i H h$ with $h=(i / 4)(f H g+g H f)$. By Theorem 2.2, h as well as $H h$ are in L^{1}; consequently, $F==C f \cdot C^{+} g \in L^{1}$ and $H F \in L^{1}$. Moreover, $(C F)(z)=(1 / 2 i)\left[\left(-H n_{y}\right) * F \cdots i\left(n_{y} * F\right)\right](x)$ for $y>0$, where $z=x+i y$ and $n_{y}(x)=(1 / \pi)\left(y /\left(x^{2}+y^{2}\right)\right)$ is the Poisson kernel. By Proposition 8.2.3 of [1], this implies $(C F)(z)=(1 / 2 i)\left[n_{y} *(-H F \div i F)\right](x)$ and consequently, $C^{+} F=F$, which is the required identity.

The existence a.e. and in the L^{1} norm of $C^{-} F$ could be derived from [4, pp. 220, 221] too.

Acknowiedgment

I am indebted to Mr. G. Wilmes, Aachen, for his careful reading of the manuscript.

References

1. P. L. Butzer and R. J. Nessel, "Fourier Analysis and Approximation," Vol. I, Birkhäuser, Basel/Academic Press, New York, 1971.
2. J. Cossar, On conjugate functions, Proc. London Math. Soc. Ser. 2 (1939) 45, 369-38!.
3. U. Nerl, "Singular Integrals," Springer, New York, 1974.
4. E. M. Strin, "Singular Integrals and Differentiability Properties of Functions." Princeton University Press, Princeton, 1970.
5. F. G. Tricomi, "Integral Equations," Interscience, New York, 1965.
